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Using a high-frequency expansion in periodically driven extended Hubbard models, where the strengths and ranges of
density–density interactions are arbitrary, we obtain the effective interactions and bandwidth, which depend sensitively
on the polarization of the driving field. Then, we numerically calculate modulations of correlation functions in a quarter-
filled extended Hubbard model with nearest-neighbor interactions on a triangular lattice with trimers after monocycle
pulse excitation. We discuss how the resultant modulations are compatible with the effective interactions and bandwidth
derived above on the basis of their dependence on the polarization of photoexcitation, which is easily accessible by
experiments. Some correlation functions after monocycle pulse excitation are consistent with the effective interactions,
which are weaker or stronger than the original ones. However, the photoinduced enhancement of anisotropic charge
correlations previously discussed for the three-quarter-filled organic conductor α-(bis[ethylenedithio]-tetrathiafulvale-
ne)2I3 [α-(BEDT-TTF)2I3] in the metallic phase is not fully explained by the effective interactions or bandwidth, which
are derived independently of the filling.

1. Introduction

Nonequilibrium properties of quantum many-body systems
have received much attention, which can lead to advances in
their real-time and coherent manipulation. Motivated by
experiments on ultracold atomic gases, interaction quench
has been discussed theoretically in different contexts.1–7) For
many-electron systems in solids, periodic driving is achiev-
able, including photoexcitation. Electromagnetic fields are
often incorporated into the Peierls phase multiplied by
transfer integrals. In particular, for continuous waves, long-
time dynamics compared with the period of the oscillating
field has been discussed to develop the concept of dynamical
localization.8–10) The corresponding effective Hamiltonian is
simply the time average of the time-dependent Hamiltonian
and is regarded as the lowest-order (/ !0) term in a high-
frequency (ω) expansion for an effective Hamiltonian in the
framework of quantum Floquet theory.11–17) For instance,
a Floquet topological insulator can be discussed in the
second-lowest order (/ !�1).18) In the next order (/ !�2),
local interactions are modulated.11–17) Bearing many-electron
systems in solids in mind, we first consider extended
Hubbard models, where the strengths and ranges of
density–density interactions are arbitrary.

Most photoinduced phase transitions are triggered by a
pulse of light.19–22) As the pulse width decreases, the time
resolution is improved and the instantaneous field amplitude
increases. At the same time, oscillating electric fields are
viewed as coherently driving many electrons.23,24) Recently,
the optical freezing of charge motion25) and the photoinduced
suppression of conductivity26) have been observed. For the
former, the similarity to dynamical localization was pointed
out, although dynamical localization is a continuous-wave-
induced phenomenon.

Various similarities between continuous-wave- and pulse-
induced phenomena are known. A negative-temperature state
is produced in both cases if the electric field amplitude is
large and satisfies a certain condition.27–30) A sudden
application of a continuously oscillating weak electric field
to the half-filled Hubbard model immediately decreases the

double occupancy.27) Similar behavior has also been reported
in a one-dimensional Bose–Hubbard model.5) Because this
early-stage dynamics does not depend on whether the field
continues to be applied or not, in both the continuous-wave
and pulse cases the transient state behaves as if the interaction
strength were increased relative to the bandwidth. The
transition from a charge-ordered insulator phase to a Mott
insulator phase in the quasi-two-dimensional metal complex
Et2Me2Sb[Pd(dmit)2]2 (dmit = 1,3-dithiol-2-thione-4,5-di-
thiolate)31) can theoretically be controlled by suppressing
the effective transfer integrals in both cases.32) The similarity
between continuous-wave- and pulse-induced phenomena
has also been discussed for a one-dimensional transverse
Ising model.33)

In practice, the application of laser pulses is more
advantageous than that of continuous waves for ultrafast
collective phenomena that become possible only when the
electric field amplitude is large. The optical freezing of
charge motion25) is indeed one such phenomenon. Theoret-
ically, for pulse-induced phenomena in quantum many-body
systems, only numerical approaches have so far been
employed. In this context, an analytic approach will be
useful if similarities are empirically found between contin-
uous-wave- and pulse-induced phenomena, even if it is
basically developed for continuous waves. In this study, we
employ a high-frequency expansion to obtain an effective
Hamiltonian in the framework of quantum Floquet theory
and discuss the behavior generally expected after periodic
driving. Then, we tentatively use it to analyze pulse-induced
transient states. If transient states including those similar to
dynamically localized states survive for a while, they may be
described by the effective Hamiltonian, which has renormal-
ized transfer integrals and interactions.

We will compare states expected by the effective
Hamiltonian and monocycle-pulse-induced transient states,
which are numerically obtained by solving a time-dependent
Schrödinger equation. Although the photoinduced enhance-
ment of anisotropic charge correlations previously discussed
for the 3=4-filled organic conductor α-(bis[ethylenedithio]-
tetrathiafulvalene)2I3 [α-(BEDT-TTF)2I3] in the metallic
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phase34) is not reproduced by the effective Hamiltonian, it
is shown to be generally useful when we roughly expect
transient states after monocycle pulse excitation.

2. High-Frequency Approximation for Periodically
Driven, Extended Hubbard Models

In this section, we do not specify the dimension or lattice
structure (i.e., network of transfer integrals) and generally
consider extended Hubbard models, where the strengths and
ranges of density–density interactions are arbitrary,

H ¼
X

i; jð≠iÞ;�
tijc

y
i;�cj;� þ

1

2

X
i;�

Uini;�ni;��

þ 1

2

X
i; jð≠iÞ;�;�

Vijni;�nj;�; ð1Þ

where cyi� creates an electron with spin σ at site i and
ni� ¼ cyi�ci�. The parameters tij and Vij denote the transfer
integral and the intersite repulsion, respectively, between
sites i and j, and Ui denotes the on-site repulsion at site i.
Photoexcitation is introduced through the Peierls phase,

cyi;�cj;� ! exp
ie

ħc
rij � AðtÞ

� �
cyi;�cj;�; ð2Þ

with rij ¼ rj � ri. In this section, we consider the time-
dependent vector potential for a continuous wave,

AðtÞ ¼ � cF

!
sinð!tÞ; ð3Þ

where ω is the frequency and F describes the amplitude and
polarization of the electric field. When we substitute Eq. (3)
into Eq. (2), we obtain the Peierls phase factor, which is
expanded as

exp i
eaijF

ħ!
cosð�ij � �Þ sin!t

� �

¼
X1

m¼�1
JmðijÞ expðim!tÞ; ð4Þ

where JmðijÞ denotes

JmðijÞ � Jm
eaijF

ħ!
cosð�ij � �Þ

� �
; ð5Þ

with JmðxÞ being the mth-order Bessel function, aij ¼
jri � rjj, and �ij is the angle between ri � rj (not rj � ri)
and a reference axis. Note that �ji ¼ �ij þ � ðmod 2�Þ; thus,
cosð�ji � �Þ ¼ �cosð�ij � �Þ. Note also that Jmð�xÞ ¼
J�mðxÞ ¼ ð�1ÞmJmðxÞ.

For continuous waves, as long as the time evolution is
considered in a stroboscopic manner in steps of the period
T ¼ 2�=!, the stroboscopic time evolution is described by
a time-independent effective Hamiltonian. The effective
Hamiltonian is approximately derived by a high-frequency
expansion.11–17) We follow Ref. 14, which employs degen-
erate perturbation theory in the extended Floquet Hilbert
space, and use its notations. In the lowest order, we have

Hð1Þ
F ¼ H0 þ Hint; ð6Þ

where

H0 ¼
X

i; jð≠iÞ;�
tijJ0ðijÞcyi;�cj;� ð7Þ

and

Hint ¼ 1

2

X
i;�

Uini;�ni;�� þ 1

2

X
i; jð≠iÞ;�;�

Vijni;�nj;�: ð8Þ

In the second-lowest order, we have

H ð2Þ
F ¼

X
m≠0

HmH�m
mħ!

; ð9Þ

where

Hm ¼
X

i; jð≠iÞ;�
tijJmðijÞcyi;�cj;�: ð10Þ

In the next order, we obtain

H ð3Þ
F ¼

X
m≠0

 
½H�m; ½H0 þ Hint; Hm��

2ðmħ!Þ2

þ
X

m0≠0;m

½H�m0 ; ½Hm0�m;Hm��
3mm0ðħ!Þ2

!
; ð11Þ

thus, we define

Hð3Þ
F;int ¼

X
m≠0

½H�m; ½Hint; Hm��
2ðmħ!Þ2 ; ð12Þ

as in Ref. 14.
We decompose the interaction term

Hint ¼ HU þ HV ð13Þ
into

HU ¼ 1

2

X
i;�

Uini;�ni;�� ð14Þ

and

HV ¼ 1

2

X
i; jð≠iÞ;�;�

Vijni;�nj;� ð15Þ

to obtain

H ð3Þ
F;int ¼

X
m≠0

½H�m; ½HU;Hm�� þ ½H�m; ½HV;Hm��
2ðmħ!Þ2 : ð16Þ

The double commutators in Eq. (16) are calculated in the
Appendix. Substituting Eqs. (A·9) and (A·16) into Eq. (A·5)
and similar terms, which are obtained by setting l0 ¼ l2 or
l0 ¼ l3 in Eq. (A·9), into Eq. (A·1), and further substituting
the resultant Eqs. (A·1) and (A·5) into Eq. (16), we obtain the
modulations of on-site and intersite repulsive interactions,
which are

�Ui ¼
X1
m¼1

4

ðmħ!Þ2
X
j

ðVij �UiÞt2ijJ2mðijÞ; ð17Þ

and

�Vij ¼
X1
m¼1

4

ðmħ!Þ2
�

Ui þ Uj

2
� Vij

� �
t2ijJ

2
mðijÞ

þ
X
k

ðVkj � VijÞt2ikJ2mðikÞ
�
: ð18Þ

Since the modulations �Ui and �Vij originate from the double
commutators in Eq. (16), they depend sensitively on θ.

So far, we have distinguished on-site (Ui) and intersite
(Vij) repulsions. If we set Vii ¼ Ui and sum over sites i and j
irrespective of whether they are different or not in the third
term and ignore the second term in Eq. (1), the difference
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between the resultant Hamiltonian and Eq. (1) is a one-body
term that becomes a constant when Ui is independent of i
because the total number of electrons Ne is conserved. This
fact is useful in checking formulae. In fact, Eqs. (17) and (18)
are consistent: Eq. (17) is a special case of Eq. (18) with
i ¼ j. If we consider the case where Ui ¼ � and Vij ¼ � for all
i and j (thus, Hint ¼ 1

2
�N2

e ), the interaction is conserved and
independent of time, so that Ui and Vij are not modified at all.
Equations (17) and (18) satisfy this condition, as easily
checked. Note that Eqs. (17) and (18) are independent of the
filling or the system size. Therefore, the effective interactions
will not be able to describe any phenomena that are sensitive
to the filling or the system size.

As is evident from the Appendix, most of the terms in
Hð3Þ

F;int are not interactions between site-diagonal densities,
but they bring about electron transfers. As a consequence,
continuous-wave-induced changes in the electronic state will
generally tend to homogenize the electron distribution if the
charge is initially disproportionated. When we focus on the
interaction terms between site-diagonal densities, the modu-
lations of the interaction strengths �Ui [Eq. (17)] and �Vij

[Eq. (18)] have contributions from themselves with negative
signs (thus weakening the effective Ui and Vij by themselves)
and contributions from other strengths with positive signs
(thus are enhanced by all other strengths with the same
signs). This implies that large interaction parameters become
small while small interaction parameters become large, thus
averaging themselves out. Indeed, in the special case where
all the interaction parameters are equal (Ui ¼ � and Vij ¼ �
for all i and j), the modulation is absent (all the interaction
parameters are already averaged out). It is natural to assume
that the modulations approach the special form of the
interaction 1

2
�N2

e , which is actually equivalent to no
interaction because Ne is a constant.

In realistic cases, interaction strengths are zero or very
small between distant sites, large between neighboring sites,
and largest on a single site. Therefore, the effective
Hamiltonian will possess weaker interactions between
neighbors and stronger interactions between distant sites than
the original one. If there is anisotropy in intersite interactions
between neighboring sites, the anisotropy will be suppressed
and the effective Hamiltonian will acquire isotropic inter-
actions. Note that the rates of the modulations are governed by
the square of a transfer integral multiplied by a corresponding
non-zeroth-order Bessel function divided by ω, as shown in
Eqs. (17) and (18), leading to their sensitivity to θ.

3. Correlations after Monocycle Pulse Excitation

3.1 Extended Hubbard model on triangular lattice
In this section, we specify the network of transfer integrals

and the strengths and ranges of density–density interactions.
We use a quarter-filled extended Hubbard model with on-site
and nearest-neighbor repulsions on the triangular lattice with
linear trimers shown in Fig. 1, which was previously
employed to study the mechanism for the photoinduced
tendency toward charge localization.34) The triangular lattice
we consider here consists of equilateral triangles, where the
distance between neighboring sites is denoted by a, and has
inversion symmetry. The use of this model facilitates a
comparison of the high-frequency expansion of the effective
Hamiltonian and numerical results.

For the transfer integrals tij, we use t1 ¼ �0:14, t2 ¼
�0:13, t3 ¼ �0:02, t4 ¼ �0:06, t5 ¼ 0:03, and t05 ¼ �0:03
in Fig. 1, as before.34) For the on-site repulsion, we consider
Ui ¼ U for all i and use U ¼ 0:8 unless stated otherwise.
For the intersite repulsions, we take only nearest-neighbor
Coulomb repulsions and set Vij ¼ V1 for rij not being parallel
to the vertical axis and Vij ¼ V2 for rij being parallel to the
vertical axis, as shown in Fig. 1, and use V1 ¼ 0:3 unless
stated otherwise.

The initial state is the ground state obtained by the exact
diagonalization method for the 16-site system with periodic
boundary conditions. The time-dependent vector potential in
the Peierls phase is now set to be29,30)

AðtÞ ¼ cF

!
½cosð!tÞ � 1��ðtÞ� 2�

!
� t

� �
; ð19Þ

with F ¼ Fðcos �; sin �Þ, where F is the amplitude of the
electric field and θ is the angle between the field and the
horizontal axis. As in the previous paper,34) we use ! ¼ 0:8.
The time-dependent Schrödinger equation is numerically
solved by expanding the exponential evolution operator with
a time slice dt ¼ 0:02 to the 15th order and by checking the
conservation of the norm.35) The time average hhQii of a
quantity Q is calculated by

hhQii ¼ 1

tw

Z tsþtw

ts

h�ðtÞjQj�ðtÞi dt; ð20Þ

with ts ¼ 5T and tw ¼ 5T, where T is the period T ¼ 2�=!.
Figures 2(a) and 2(b) represent the time evolutions of
quantities shown later in Figs. 4(a) and 5(a), respectively.
For eaF=ðħ!Þ ¼ 0:4 with ħ! ¼ 0:8 eV and a ¼ 5:9Å
(4.6Å), which is close to the intermolecular distance along
“b” (“a”) bonds of α-(BEDT-TTF)2I3, the field amplitude
corresponds to about F ¼ 5:4MV=cm (7.0MV=cm) that is
available in recent experiments.25) Since ! ¼ 0:8 corre-
sponds to the largest model parameter (U ¼ 0:8), oscillations
appearing after photoexcitation [!t=ð2�Þ ¼ t=T > 1] have
frequencies that are comparable to ω. In spite of the presence
of such oscillations, the transient quantities are significantly
different from the corresponding initial values. Thus, only
time averages are shown below for the transient states.

Although details are discussed later, here we briefly
comment on the fact that the behavior shown in Fig. 2(a) is
similar to dynamical localization and its time average appears
consistent with the lowest-order effective Hamiltonian.
Similar numerical results have been reported for Fermi–

V2 V1
U
V2
V1V1

V1

B
A’

A

C

t2
t1

t1

t5

t'5t4t1

t1

t1

t1

t1
t1

t1

t1

t1
t1

t'5

t'5

t'5
t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t2 t2 t2
t2 t2

t2

t2 t2 t2

t2 t2 t2
t2 t2

t3

t3
t3

t3
t3

t3

t3

t3
t3

t3
t3

t3

t3 t3

t4
t4

t4
t4

t4
t4

t4
t4 t4

t4
t4

t3

Fig. 1. (Color online) Triangular lattice with linear trimers linked by t1.
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Hubbard27) and Bose–Hubbard5) models after a sudden
application of continuously oscillating fields. For a one-
dimensional Bose–Hubbard model, field-induced states have
been analyzed for different ω values, field amplitudes, and
time scales.5) For high frequencies (! � U), dynamical
localization is observed. For a resonant excitation (! ¼ U),
the behavior is similar to dynamical localization only for
the first few cycles and quickly deviates from it owing to
the resonant absorption of energy. This continuous-wave-
induced behavior is consistent with a recently proved
theorem,36–39) which shows that the time evolution under a
periodically driven Hamiltonian is close to that under a
truncated Floquet Hamiltonian for a ω-dependent time scale.
For high frequencies, the time scale is exponentially long. As
ω decreases, the time scale is shortened. Eventually, systems
are generally expected to reach a steady state of infinite
temperature, although several exceptions are known. On the
other hand, this paper deals with short-time behaviors after
monocycle pulse excitation, so that their ω-dependence is
much weaker than that after the application of continuously
oscillating fields.

3.2 Expectation from effective Hamiltonian
Before showing numerical results for time averages, we

discuss what is expected from the effective Hamiltonian
obtained in Sect. 2. The bandwidth is a scale of the kinetic
energy. Without interactions and when jt1j and jt2j are
much larger than the other transfer integrals, the bandwidth
W is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

p
. In the lowest order (/ !0)

of the high-frequency expansion, t1 is renormalized to be
t1J0ðij 2 t1 bondÞ, where “ij 2 t1 bond” means that the
argument of the Bessel function is that of Eq. (5)
with sites i and j being linked by t1. In the same
manner, t2 is renormalized to be t2J0ðij 2 t2 bondÞ. The
renormalized bandwidth W þ �W is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21J

2
0 ðij 2 t1 bondÞ þ t22J

2
0 ðij 2 t2 bondÞ

p
. Then, in the low-

est order, the ratio of any interaction to the bandwidth is
increased by a factor of

W

W þ �W
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21J

2
0 ðij 2 t1 bondÞ þ t22J

2
0 ðij 2 t2 bondÞ

p ; ð21Þ

whose dependence on the polarization of photoexcitation θ is
shown in Fig. 3(a).

Interaction parameters are renormalized by non-zeroth-
order Bessel functions in the order of !�2. For small electric
field amplitudes, the arguments of Bessel functions are small,
so that the renormalization is dominated by first-order Bessel
functions. Quantitatively, how Ui and Vij are renormalized
depends on the site indices in a rather complicated manner.
When jt1j and jt2j are much larger than the other transfer
integrals, they give most of the contributions. A rough
estimation leads to

�V

V

����
���� � 4

ðħ!Þ2 ½2t
2
1J

2
1 ðij 2 t1 bondÞ þ 2t22J

2
1 ðij 2 t2 bondÞ�;

ð22Þ
since sites i and j are linked by two large transfer integrals.
Depending on the neighboring Ui, Uj, and Vkj in Eqs. (17)

(a)

(b)

Fig. 2. (Color online) Time evolution of (a) spatially averaged double
occupancy hni"ni#i of Fig. 4(a) shown later and (b) spatially averaged
nearest-neighbor density–density correlation hninji for non-vertical rij of
Fig. 5(a) shown later, both with eaF=ðħ!Þ ¼ 0:4 and � ¼ 0.

(a)

(b)

Fig. 3. (Color online) (a) Inverse of bandwidth effectively reduced by
continuous-wave excitation relative to original value, Eq. (21), and (b)
magnitude of continuous-wave-induced modulation of interactions relative to
original values, Eq. (22), as functions of polarization of photoexcitation θ.
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and (18), �Ui and �Vij can be positive or negative and they
have different numerical factors, so that we here show only
the relative magnitude and ignore the numerical factor. Thus,
the estimation above is very rough. However, these details do
not depend on θ, so the dependence of the right-hand side of
Eq. (22) on θ, which is shown in Fig. 3(b), will be useful for
various comparisons.

The quantities in both Eqs. (21) and (22) reach a
maximum around � ¼ 0 (i.e., for polarization nearly parallel
to the horizontal axis). When the argument is small, zeroth-
order Bessel functions quadratically decrease from unity, so
that any quantity with zeroth-order Bessel function(s) in its
denominator quadratically increases, and the square of a first-
order Bessel function quadratically increases from zero.
Thus, the behaviors of the quantities in Eqs. (21) and (22) are
similar. The smallness of the quantity shown in Fig. 3(b)
suggests that the high-frequency expansion converges rapidly
for the field amplitudes used here.

3.3 Numerical results for time-averaged correlations
Now we show numerical results for time averages of

correlation functions after monocycle pulse excitation. For
V2 ¼ 0:35, whose case was investigated in detail in the
previous paper,34) the spatially and temporally averaged
double occupancy hhni"ni#ii is shown in Fig. 4(a) as a
function of the polarization of photoexcitation θ. It decreases
as if the on-site repulsion U were transiently increased
relative to the bandwidth after photoexcitation, as previously

reported. Its θ dependence is similar to that in Fig. 3(a).
To investigate whether the decrease in hhni"ni#ii can be
explained quantitatively by the increased ratio of the on-site
repulsion U to the renormalized bandwidth, we vary U and
calculate the spatially averaged double occupancy of the
ground state hni"ni#i, as shown in Fig. 4(b). For � ¼ 0 and
eaF=ðħ!Þ ¼ 0:4 in Fig. 4(a), hhni"ni#ii is about 0.030. To
reproduce this value in the ground state, we need to increase
U by 4%, as shown in Fig. 4(b). Figure 3(a) shows that the
ratio of the on-site repulsion U to the renormalized bandwidth
is increased by about 3% for � ¼ 0 and eaF=ðħ!Þ ¼ 0:4.
These values are comparable.

Next we show the spatially and temporally averaged
nearest-neighbor density–density correlation hhninjii. For
V2 ¼ 0:35, which is slightly larger than V1 ¼ 0:3, we know
that the anisotropy in the effective intersite repulsive
interactions is enhanced by photoexcitation,34) which contra-
dicts Eq. (18). Then, we use V2 ¼ 0:25 and show hhninjii for
non-vertical bonds in Fig. 5(a) as a function of θ. It increases
as if the intersite repulsion V1 were transiently decreased
relative to the bandwidth after photoexcitation. Then, we vary
V1 and calculate the spatially averaged nearest-neighbor
density–density correlation of the ground state hninji for
non-vertical bonds, as shown in Fig. 5(b). For � ¼ 0 and
eaF=ðħ!Þ ¼ 0:4 in Fig. 5(a), hhninjii is about 0.17. To
reproduce this value in the ground state, we need to decrease
V1 by 8%, as shown in Fig. 5(b). This is not explained by the

(a)

(b)

Fig. 5. (Color online) (a) Spatially and temporally averaged nearest-
neighbor density–density correlation hhninjii for non-vertical rij as a
function of polarization of photoexcitation θ for U ¼ 0:8, V1 ¼ 0:3, V2 ¼
0:25, and different field amplitudes eaF=ðħ!Þ. (b) Spatially averaged nearest-
neighbor density–density correlation of ground state hninji for non-vertical
rij as a function of V1 for U ¼ 0:8 and V2 ¼ 0:25.

(a)

(b)

Fig. 4. (Color online) (a) Spatially and temporally averaged double
occupancy hhni"ni#ii as a function of polarization of photoexcitation θ for
U ¼ 0:8, V1 ¼ 0:3, V2 ¼ 0:35, and different field amplitudes eaF=ðħ!Þ.
(b) Spatially averaged double occupancy of ground state hni"ni#i as a
function of U for V1 ¼ 0:3 and V2 ¼ 0:35.
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lowest-order effect shown in Fig. 3(a). Relative interaction
strengths are effectively and differently modulated as shown
in Figs. 4 and 5 and in Fig. 6 later. We need at least a
second-order effect because in the high-frequency expansion
different interactions are modulated differently from the
second order. Figure 3(b) shows the right-hand side of
Eq. (22), which implies that the modulation is about 1.5%.
Because the actual modulation depends on the other
interaction parameters in Eq. (18) and there are effective
interactions that are not in the form of density–density
interactions, the discrepancy appears to be not so large.

Finally we show hhninjii for vertical bonds as a function of
θ for V2 ¼ 0:25 in Fig. 6(a), for V2 ¼ 0:35 in Fig. 6(b), and
for V2 ¼ 0:4 in Fig. 6(c). It decreases for V2 ¼ 0:25 < V1 as
if the intersite repulsion V2 were increased, increases for
V2 ¼ 0:4 > V1 as if V2 were decreased, and therefore
behaves as if the difference between V1 and V2 were
suppressed. For V2 ¼ 0:35, as previously reported,34) the
anisotropy in the effective Vij is enhanced by photoexcitation,
so that it is not described by the present effective Hamiltonian
and its θ dependence is different from that in Figs. 3(a) and
3(b). We vary V2 and calculate the ground state hninji for
vertical bonds, as shown in Fig. 6(d). For � ¼ 0 and
eaF=ðħ!Þ ¼ 0:4, hhninjii is about 0.222 in Fig. 6(a), which
corresponds to an increase in V2 in the ground state by 8%
(from V2 ¼ 0:25 to 0.27) in Fig. 6(d). At the same photo-
excitation, hhninjii is about 0.13 in Fig. 6(c), which
corresponds to a decrease in V2 in the ground state by 5%
(from V2 ¼ 0:4 to 0.38) in Fig. 6(d). These values (8 and 5%)
are close to that for the required modulation of V1 (8%)

above. The discrepancy from Fig. 3(b) is not very large.
More importantly, the anisotropy in the effective Vij is
reduced by photoexcitation in Figs. 6(a) and 6(c), which is
consistent with Eq. (18), and its θ dependence is similar to
that in Fig. 3(b).

4. Conclusions and Discussion

We have compared a continuous-wave-induced phenome-
non with a pulse-induced one. For continuous waves, we
employ a high-frequency expansion in the framework of
quantum Floquet theory to obtain effective transfer integrals
and interactions for extended Hubbard models, where the
strengths and ranges of density–density interactions are
arbitrary. The effective Hamiltonian is in principle valid only
for the stroboscopic time evolution in steps of the period.
Polarization dependences of the effective model parameters
are focused on because polarization dependences are
experimentally accessible through reflectivity spectra for
instance. For monocycle pulses, we use the quarter-filled
extended Hubbard model with nearest-neighbor interactions
on a triangular lattice with linear trimers, which was
previously used with particular parameters to explain the
photoinduced enhancement of anisotropic charge correlations
in α-(BEDT-TTF)2I3 in the metallic phase. Modulations of
correlation functions are investigated and their compatibility
with the effective parameters is studied.

The effective interactions for continuous waves are
produced or modulated through double commutators by the
square of a transfer integral multiplied by a non-zeroth-order
Bessel function divided by the frequency of the field, as

(a) (b)

(c)
(d)

Fig. 6. (Color online) Spatially and temporally averaged nearest-neighbor density–density correlation hhninjii for vertical rij as a function of polarization of
photoexcitation θ for U ¼ 0:8, V1 ¼ 0:3, (a) V2 ¼ 0:25, (b) V2 ¼ 0:35, and (c) V2 ¼ 0:4, and different field amplitudes eaF=ðħ!Þ. (d) Spatially averaged
nearest-neighbor density–density correlation of ground state hninji for vertical rij as a function of V2 for U ¼ 0:8 and V1 ¼ 0:3.
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already known.11–17) This knowledge is applied to density–
density interactions with arbitrary strengths and ranges. New
interaction terms that are absent in the original model contain
electron transfers from or to a site that is included in the
original interaction or linked by an electron transfer to
another site included in the original interaction, as shown in
the Appendix. They are either in the form of interactions
between site-diagonal and site-off-diagonal densities or in the
form of interactions between site-off-diagonal densities. They
will generally tend to homogenize the electron distribution if
the charge is initially disproportionated. Interactions between
site-diagonal densities Ui and Vij are modified in such a
manner that large interaction parameters become small while
small interaction parameters become large, thus averaging
themselves out. Because the rates of modulations are
governed by the square of tijJmðijÞ=!, the polarization along
the largest electron transfer jtijj is generally the most efficient.

Numerical calculations are performed for time evolutions
of correlation functions after monocycle pulse excitation on
the basis of the exact diagonalization method. The time-
averaged double occupancy behaves as if the on-site
repulsion were increased relative to the bandwidth and its
polarization dependence is comparable with the lowest-order
effect in the high-frequency expansion. Except for the case
where intersite repulsions compete, the time-averaged
nearest-neighbor density–density correlations behave as if
the anisotropy in intersite repulsions were averaged out. Their
polarization dependences are comparable to the effect in the
order of !�2 in the high-frequency expansion, although
quantitative comparisons are difficult owing to many new
effective interaction terms that contain electron transfers.

The situations so far known and clarified here are
summarized as follows. i) Immediately after monocycle
pulse excitation, early-stage changes in the electronic state
are similar to those after a sudden application of a continuous
wave. ii) When we compare between time averages of
correlation functions sufficiently after monocycle pulse
excitation and those after a sudden application of a
continuous wave with the same amplitude, the deviations
from the corresponding quantities in the ground state are
generally larger (but not much larger for high-frequency
driving) for continuous waves. iii) A sudden application of a
continuous wave (so-called “ac quench”) and the correspond-
ing interaction quench show very similar time evolutions of
correlation functions if their rapid time variations in the
former are averaged over the timescale of T.27) iv) For
interaction quench from noninteracting to interacting many-
body systems, particular nonequilibrium expectation values
are twice as large as their corresponding analogues in
equilibrium.2,4) Such overshoot phenomena are expected for
interaction quench between finite strengths and also for ac
quench.

From all these comparisons, we find that the effective
Hamiltonian is useful in roughly predicting tendencies in
correlation functions after monocycle pulse excitation.
However, the effective Hamiltonian is independent of the
filling or the system size, so that it is not directly be
applicable to phenomena particular to a special filling or
highly nonlinear phenomena such as the photoinduced
enhancement of anisotropic charge correlations in α-
(BEDT-TTF)2I3 in the metallic phase.
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Appendix: Double Commutators in Effective
Hamiltonian

The first double commutator appearing in Eq. (16) is
calculated as

½H�m; ½HU;Hm�� ¼
X

l1;l2;l3;�

ðAl1;l2;l3;� þ Bl1;l2;l3;� þ Cl1;l2;l3;�Þ;

ðA:1Þ
where

A1;2;3;� ¼ ½t12J�mð12Þt23Jmð23Þcy1;�c3;�
þ t32Jmð32Þt21J�mð21Þcy3;�c1;��U2n2;��; ðA:2Þ

B1;2;3;� ¼ �½t12J�mð12Þt23Jmð23Þcy1;�c3;�
þ t32Jmð32Þt21J�mð21Þcy3;�c1;��U3n3;��; ðA:3Þ

and

C1;2;3;�

¼ ½t12J�mð12Þcy1;�c2;� � t21J�mð21Þcy2;�c1;��U2

� ½t23Jmð23Þcy2;��c3;�� � t32Jmð32Þcy3;��c2;���: ðA:4Þ
If we write the l1 ¼ l3 and l1 ≠ l3 terms separately and
substitute them into Eq. (16), we reproduce Ref. 15 for the
case of the one-dimensional Hubbard model with homoge-
neous interaction strengths.

The second double commutator appearing in Eq. (16) is
calculated as

½H�m; ½HV;Hm��
¼

X
l0;l1;l2;l3;�;�

ðAl0;l1;l2;l3;�;� þ Bl0;l1;l2;l3;�;� þ Cl0;l1;l2;l3;�;�Þ;

ðA:5Þ
where
A0;1;2;3;�;� ¼ ½t12J�mð12Þt23Jmð23Þcy1;�c3;�

þ t32Jmð32Þt21J�mð21Þcy3;�c1;��V20n0;�; ðA:6Þ
B0;1;2;3;�;� ¼ �½t12J�mð12Þt23Jmð23Þcy1;�c3;�

þ t32Jmð32Þt21J�mð21Þcy3;�c1;��V30n0;�; ðA:7Þ
and
C0;1;2;3;�;� ¼ ½t01J�mð01Þcy0;�c1;� � t10J�mð10Þcy1;�c0;��V12

� ½t23Jmð23Þcy2;�c3;� � t32Jmð32Þcy3;�c2;��:
ðA:8Þ

If we separately write the terms where some of the l0, l1, l2,
and l3 are equal, we have, in addition to the above (different
numbers denote different sites now),

A0;1;2;3;�;�jl1¼l3 þ B0;1;2;3;�;�jl1¼l3
¼ ½t32J�mð32Þt23Jmð23Þ þ t32Jmð32Þt23J�mð23Þ�
� n3;�ðV20 � V30Þn0;�; ðA:9Þ
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A0;1;2;3;�;�jl1¼l0 þ B0;1;2;3;�;�jl1¼l0
¼ ½t02J�mð02Þt23Jmð23Þcy0;�c3;�
þ t32Jmð32Þt20J�mð20Þcy3;�c0;��ðV20 � V30Þn0;�; ðA:10Þ

A0;1;2;3;�;�jl3¼l0
¼ ½t12J�mð12Þt20Jmð20Þcy1;�c0;�
þ t02Jmð02Þt21J�mð21Þcy0;�c1;��V20n0;�; ðA:11Þ

B0;1;2;3;�;�jl2¼l0
¼ �½t10J�mð10Þt03Jmð03Þcy1;�c3;�
þ t30Jmð30Þt01J�mð01Þcy3;�c1;��V30n0;�; ðA:12Þ

C0;1;2;3;�;�jl0¼l3
¼ ½t31J�mð31Þcy3;�c1;� � t13J�mð13Þcy1;�c3;��V12

� ½t23Jmð23Þcy2;�c3;� � t32Jmð32Þcy3;�c2;��; ðA:13Þ
C0;1;2;3;�;�jl0¼l2

¼ ½t21J�mð21Þcy2;�c1;� � t12J�mð12Þcy1;�c2;��V12

� ½t23Jmð23Þcy2;�c3;� � t32Jmð32Þcy3;�c2;��; ðA:14Þ
C0;1;2;3;�;�jl3¼l1

¼ ½t01J�mð01Þcy0;�c1;� � t10J�mð10Þcy1;�c0;��V12

� ½t21Jmð21Þcy2;�c1;� � t12Jmð12Þcy1;�c2;��; ðA:15Þ
A0;1;2;3;�;�jl0¼l1¼l3¼li;l2¼lj þ B0;1;2;3;�;�jl1¼l3¼li;l0¼l2¼lj

¼ ½tijJ�mðijÞtjiJmð jiÞ þ tijJmðijÞtjiJ�mð jiÞ�
� 1

2
ðni;� � nj;�ÞVijðni;� � nj;�Þ; ðA:16Þ

and

C0;1;2;3;�;�jl0¼l2;l3¼l1
¼ ½t21J�mð21Þcy2;�c1;� � t12J�mð12Þcy1;�c2;��V12

� ½t21Jmð21Þcy2;�c1;� � t12Jmð12Þcy1;�c2;��: ðA:17Þ
Because ½H�m; ½HU;Hm�� is a special case of
½H�m; ½HV;Hm�� (i.e., Ui ¼ Vii), we omit the corresponding
terms for ½H�m; ½HU;Hm��.
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