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We propose that light can break mirror symmetries and combining symmetries with a uniform time translation, and
their breaking is characterized by an off-diagonal charge conductivity. Taking periodically driven graphene as an
example, we show that mirror symmetries about the xz and yz planes and the combining symmetries, the symmetries of
combinations of the mirror operations about these planes and a uniform time translation, can be broken by linearly or
circularly polarized light. We also show that this symmetry breaking induces the time-averaged off-diagonal symmetric
or antisymmetric charge conductivity in a nonequilibrium steady state with linearly or circularly, respectively, polarized
light. Our results are experimentally testable in pump–probe measurements. This work will pave the way for controlling
mirror symmetries via light and utilizing the light-induced mirror symmetry breaking.

1. Introduction

Light can break symmetries in time and space. For
example, circularly polarized light (CPL) can break the
time-reversal symmetry.1–3) If CPL is applied to a non-
magnetic material, it can induce the magnetization;4) the
direction of this light-induced magnetization can be reversed
by changing the helicity of CPL.5) CPL can also induce the
anomalous Hall effect (AHE),6,7) in which a charge current
perpendicular to an applied electric field is generated;8–10) the
magnitude and direction of this current can be changed by
varying the amplitude and helicity of CPL.6,7,11,12) Then,
bicircularly polarized light,13,14) which consists of a linear
combination of left-handed and right-handed CPL, can break
not only the time-reversal, but also the inversion symme-
try.15) In fact, it can be used to realize noncentrosymmetric
magnetic topological phases15) and generate electric polar-
ization.16) Since the application of light enables us to
engineer electronic, magnetic, or transport properties without
changing materials, it is crucial to understand which
symmetry is broken by light and how its symmetry breaking
affects the properties.

In this paper, we show the mirror symmetry breaking by
CPL or by linearly polarized light (LPL), which results in
an off-diagonal antisymmetric or symmetric, respectively,
charge conductivity (i.e., �C

xy ¼ ��C
yx or �C

xy ¼ �C
yx, respec-

tively). This is demonstrated for periodically driven graphene.
The difference between the cases with CPL and LPL comes
from the difference in the time-reversal symmetry. The main
results are summarized in Table I. Our results suggest that a
combination of time-reversal symmetry breaking and mirror
symmetry breaking is the origin of the light-induced AHE,
and that the off-diagonal symmetric charge conductivity
could be used to detect whether mirror symmetries are broken
or preserved in the presence of the time-reversal symmetry.

2. Model

Our periodically driven electron system is described by the
Hamiltonian,

H ¼ HsðtÞ þHb þHsb: ð1Þ
Here HsðtÞ is the Hamiltonian of the system driven by a light
field AðtÞ, the effect of which is treated as the Peierls phase
factors:

HsðtÞ ¼
X
k

X
a;b¼A;B

X
�¼";#

�abðk; tÞcyka�ckb�; ð2Þ

where �ABðk; tÞ ¼ �BAðk; tÞ� ¼ tNN
P2

l¼0 e
�i½kþeAðtÞ��Rl ,

�aaðk; tÞ ¼ 0, R0 ¼ tð0 1Þ, R1 ¼ tð�
ffiffi
3

p
2

�1
2
Þ, R2 ¼ tð

ffiffi
3

p
2

�1
2
Þ,

tNN is the hopping integral between nearest neighbor sites
on a honeycomb lattice17) without AðtÞ, and cyka� and cka�
are the creation and annihilation operators of an electron for
momentum k, sublattice a, and spin σ. Hereafter, we set
ħ ¼ c ¼ kB ¼ aNN ¼ 1, where aNN is the length between
nearest neighbor sites. Then, Hb is the Hamiltonian of the
Buttiker-type heat bath,18,19) which is in equilibrium at tem-
perature T: Hb ¼

P
i

P
pð�p � �bÞbyipbip, where bip and byip

are the annihilation and creation operators of a bath’s fermion
at site i for mode p, and �p and �b are the energy and chemical
potential of a bath’s fermion; �b is determined from the con-
dition that there is no current between the system and bath. In
addition, Hsb is the system-bath coupling Hamiltonian:11,12,20)

Hsb ¼
P

i

P
p

P
a¼A;B

P
�¼";# Vpa�ðcyia�bip þ byipcia�Þ, where

Vpa� is the system-bath coupling constant.
We have considered Hb and Hsb, as well as HsðtÞ, because

the damping due to the system-bath coupling makes the
system a nonequilibrium steady state.11,12,20) Such a relaxa-

Table I. Properties of systems driven by CPL or LPL. The difference
among LPL1, LPL2, and LPL3 is about the polarization: Ax ≠ 0 and Ay ≠ 0

in LPL1; Ax ≠ 0 and Ay ¼ 0 in LPL2; and Ax ¼ 0 and Ay ≠ 0 in LPL3. Trev

represents the time-reversal symmetry, �m or � 0
m represents the mirror

symmetry about the xz or yz plane, respectively, and C3 represents the C3

rotational symmetry around the z axis. �mTt, � 0
mTt, or C3Tt represents the

symmetry of a combination of the mirror operation about the xz or yz plane
or the C3 rotation operation and a uniform time translation Tt. �C

yx represents
an off-diagonal charge conductivity. �mTt or � 0

mTt is preserved with LPL3
or LPL2, respectively, if Tt : t ! t � �

�
. C3Tt is preserved with CPL if

Tt : t ! t þ 2�
3�
.

CPL LPL1 LPL2 LPL3

Trev Broken Preserved Preserved Preserved
�m Broken Broken Preserved Broken
�mTt Broken Broken Preserved Preserved
� 0
m Broken Broken Broken Preserved

� 0
mTt Broken Broken Preserved Preserved
C3 Broken Broken Broken Broken
C3Tt Preserved Broken Broken Broken
�C
yx Antisymmetric Symmetric Vanishing Vanishing
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tion mechanism is necessary for periodically driven systems,
in which the heating due to the driving field exists.21,22)

3. Light-induced Mirror Symmetry Breaking

First, we analyze the polarization dependence of the light-
induced mirror symmetry breaking. For our periodically
driven electron system, whether a mirror symmetry is
preserved or broken is determined by the symmetry of the
kinetic energy, which is characterized by

�ABðk; tÞ ¼ tZABðtÞe�iky þ tXABðtÞei
ffiffi
3

p
2
kxei

ky
2

þ tYABðtÞe�i
ffiffi
3

p
2
kxei

ky
2 ; ð3Þ

�BAðk; tÞ ¼ tZBAðtÞeiky þ tXBAðtÞe�i
ffiffi
3

p
2
kxe�i

ky
2

þ tYBAðtÞei
ffiffi
3

p
2
kxe�i

ky
2 ; ð4Þ

where tZABðtÞ ¼ tZBAðtÞ�, tXABðtÞ ¼ tXBAðtÞ�, and tYABðtÞ ¼ tYBAðtÞ�.
Here Z, X, and Y represent the three bonds between
nearest neighbor sites (see Fig. 1). If the hopping integrals
satisfy

tZABðtÞ ¼ tZBAðtÞ; tYABðtÞ ¼ tXBAðtÞ; tXABðtÞ ¼ tYBAðtÞ; ð5Þ
the mirror symmetry about the xz plane [Fig. 1(a)] is
preserved; otherwise, it is broken.

We begin with the system driven by LPL. The field of LPL
is described by

ApumpðtÞ ¼ tðA0�x cos�t A0�y cos�tÞ; ð6Þ
where � ¼ 2�=Tp is the light frequency, and Tp is the
period of ApumpðtÞ. In this case, tZABðtÞ ¼ tNNe

�iu�y cos�t,

tXABðtÞ ¼ tNNe
iu�x

ffiffi
3

p
2
cos�teiu�y

1
2
cos�t, and tYABðtÞ ¼

tNNe
�iu�x

ffiffi
3

p
2
cos�teiu�y

1
2
cos�t, where u ¼ eA0. For the LPL with

�x ≠ 0, �y ¼ 0, these hopping integrals satisfy Eq. (5), which
means that the mirror symmetry about the xz plane is
preserved. Meanwhile, for the LPL with �x ¼ 0, �y ≠ 0 or
with �x ≠ 0, �y ≠ 0, this mirror symmetry is broken.

We turn to the case with CPL. The field of CPL is given by

ApumpðtÞ ¼ tðA0 cos�t A0 sin�tÞ: ð7Þ
In a similar way, we can show that the mirror symmetry
about the xz plane is broken.

We make five remarks. First, we can similarly show that
the mirror symmetry about the yz plane [Fig. 1(b)] is broken
by LPL with �x ≠ 0, �y ¼ 0, by that with �x ≠ 0, �y ≠ 0, and
by CPL, whereas it is preserved by LPL with �x ¼ 0, �y ≠ 0.
Second, the same polarization dependence holds for the
Floquet Hamiltonian (see Appendix A). Third, the similar
arguments can be used to discuss whether a mirror symmetry
is broken or not in the other periodically driven electron
systems. Fourth, a mirror symmetry of a periodically driven
electron system does not necessarily match that of the
trajectory of ApumpðtÞ. For example, CPL breaks the mirror
symmetry about the xz plane, whereas the trajectory of its
ApumpðtÞ has the mirror symmetry in the Ax–Ay plane [see
Fig. 2(a)]. Fifth, our mirror symmetry, the symmetry about a
mirror operation in crystals, is essentially different from a
symmetry discussed in Ref. 23, the symmetry about the
energy spectrum as a function of magnetic flux. Namely, the
light-induced symmetry breaking discussed in Ref. 23 is
not about crystal’s mirror symmetry. To the best of our

knowledge, our paper is the first work demonstrating the
light-induced breaking of crystal’s mirror symmetry.

The above arguments show that the mirror symmetries
about the xz and yz planes are broken with CPL or LPL1 (i.e.,
LPL with finite �x and �y). To study a time-averaged quantity
in a nonequilibrium steady state, we need to discuss not only
the mirror symmetries, but also its combining symmetries,
the symmetries of combinations of the mirror operations
about the xz and yz planes and a uniform time translation,
because that quantity is not affected by such a translation.
(Note that such a combining symmetry is sometimes called a
space-time or dynamical symmetry.) In general, there is a
case that a spatial symmetry is broken, but its combining
symmetry is preserved; in such a case, a time-averaged
quantity in a nonequilibrium steady state behaves as if the
spatial symmetry were preserved. As we show in Appen-
dix B, the combining symmetries for the mirror operations
are also broken with CPL or LPL1. This contrasts with the
combining symmetry for the C3 rotation in graphene driven
by CPL (see Appendix B): the C3 rotational symmetry is
broken, but the symmetry of a combination of the C3 rotation
and the uniform time translation Tt : t ! t þ 2�

3�
is pre-

served.11) This combining symmetry may be called a time-
screw symmetry. In Appendix B, we also show that the
combining symmetry for the mirror operation about the yz or
xz plane is preserved with LPL2 (i.e., LPL with �x ≠ 0,
�y ¼ 0) or LPL3 (i.e., LPL with �x ¼ 0, �y ≠ 0), respec-
tively, if Tt : t ! t � �

�
. This combining symmetry may be

called a time-glide symmetry. We do not necessarily call the
combining symmetry for a mirror operation a time-glide one
because an analogy with an axial glide symmetry suggests
that a time-glide symmetry consists of a mirror operation and
the uniform time translation with Tp=2. Then, the C3

rotational symmetry and its combining symmetry are both
broken with LPL (see Appendix B). These results are
summarized in Table I.

4. Charge Transport Induced by Mirror Symmetry
Breaking

Next, we study the effects of the light-induced mirror
symmetry breaking on transport properties. To do this, we
use the Floquet linear-response theory11,12,24) for pump–probe
measurements [Fig. 2(b)]. In this theory, we set AðtÞ ¼
ApumpðtÞ þ AprobðtÞ and treat the effects of ApumpðtÞ in the
Floquet theory25,26) and those of AprobðtÞ in the linear-
response theory.27) The ApumpðtÞ for LPL or CPL is given by
Eq. (6) or (7), respectively. Note that ApumpðtÞ is used to
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Fig. 1. (Color online) The honeycomb lattice and (a) the xz or (b) the yz
mirror plane. The dashed lines denote the mirror planes. The green arrows
represent the bonds which are connected by the mirror symmetry. A or B
represents sublattice A or B, respectively. The red, blue, and dark green
bonds represent Z, X, and Y bonds, respectively. The x and y axes are also
drawn.
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periodically drive the system, whereas AprobðtÞ is used to
analyze its properties.28) In this theory, we use the Floquet
Hamiltonian for HsðtÞ, which is distinct from the Hamiltonian
obtained in a high-frequency expansion. Using the Floquet
linear-response theory, we obtain a time-averaged charge
conductivity �C

�� in the nonequilibrium steady state11,12) (see
Appendix C),

�C
�� ¼

e2

V

X
k

X
a;b;c;d¼A;B

X
�;�0¼";#

Z �=2

��=2

d!0

2�

� tr
�
v�
abðkÞ

@GR
b�c�0 ðk; !0Þ
@!0 v�cdðkÞG<

d�0a�ðk; !0Þ

� v�
abðkÞG<

b�c�0 ðk; !0Þv�cdðkÞ
@GA

d�0a�ðk; !0Þ
@!0

�
; ð8Þ

where the trace is taken over the Floquet states [i.e.,
trðABCDÞ ¼P1

m;l;n;q¼�1 AmlBlnCnqDqm with Floquet indices
m, l, n, and q], V ¼ N

2
3
ffiffi
3

p
2
, N is the number of sites, ½v�abðkÞ�mn

is the group velocity in the Floquet representation, and
½GR

a�b�0 ðk; !0Þ�mn, ½GA
a�b�0 ðk; !0Þ�mn, and ½G<

a�b�0 ðk; !0Þ�mn are
the retarded, advanced, and lesser Green’s functions,
respectively, in the Floquet representation. (For more details,
see Appendix C.) These Green’s functions are determined
from Dyson’s equation with the damping Γ due to the
second-order perturbation of Hsb (see Appendix D). Note that
�C
�� is equivalent to the anomalous Hall conductivity if and

only if it is antisymmetric.
Using Eq. (8), we numerically evaluate �C

yx and �C
xy for

graphene driven by CPL, LPL1, LPL2, and LPL3. (For
details of the numerical calculations, see Appendix E.) The
directions of the probe field and the observed charge current
are fixed: for �C

yx (or �
C
xy), the charge current along the y (or x)

axis is generated with the probe field applied along the x
(or y) axis. CPL is described by Eq. (7), and LPL1, LPL2, or

LPL3 is described by Eq. (6) with �x ¼ �y ¼ 1, with �x ¼ 1

and �y ¼ 0, or with �x ¼ 0 and �y ¼ 1, respectively
[Fig. 2(a)]; as described above, the mirror symmetry about
the xz or yz plane is preserved only for LPL2 or LPL3,
respectively. We set � ¼ 8tNN and tNN ¼ 1; our light is off-
resonant, i.e., � > W, where W (¼ 6tNN) is the bandwidth
without light. (We have summarized the main results in
Table I.) Except for the results of the damping or temperature
dependence of �C

yx with LPL1, we set � ¼ 0:004tNN and
T ¼ 0:006tNN. When discussing the damping dependence,
we set T ¼ 0:006tNN and compare the results obtained at
� ¼ 0:004tNN, 0:002tNN, and 0:006tNN; when discussing the
temperature dependence, we set � ¼ 0:004tNN and compare
the results obtained at T ¼ 0:006tNN, 0:004tNN, and
0:008tNN.

Figure 2(c) shows the u dependences of �C
yx in graphene

driven by CPL, LPL1, LPL2, and LPL3. �C
yx for u ≠ 0 is

finite for CPL and LPL1, whereas it vanishes for LPL2
and LPL3. The similar results are obtained also for �C

xy

[Fig. 2(d)]. These results are consistent with the properties
of the mirror symmetries about the xz and yz planes and their
combining symmetries (see Table I). Therefore, the mirror
symmetries and their combining symmetries play a vital role
in discussing the off-diagonal charge conductivities. Note
that since u ¼ eA0 ¼ eE0=� is dimensionless, the u de-
pendence of �C

yx at fixed Ω gives its dependence on E0, the
amplitude of the light field.

One of the main differences between the cases of CPL and
LPL1 is the relation between �C

yx and �C
xy. Figure 2(d) shows

the u dependences of �C
xy in graphene driven by CPL, LPL1,

LPL2, and LPL3. Comparing this figure with Fig. 2(c), we
see that �C

xy ¼ ��C
yx for CPL, whereas �C

xy ¼ �C
yx for LPL1.

They are the Onsager reciprocal relations,29,30) and their
difference comes from the difference in the time-reversal
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Fig. 2. (Color online) (a) The trajectories of ApumpðtÞ for CPL, LPL1, LPL2, and LPL3. (b) The setup for the pump–probe measurements of �C
yx in our

periodically driven system. For the setup of �C
xy, the directions of the probe field and charge current are interchanged. The arrow of the pump light indicates the

direction of travel, and that of the probe light indicates the direction of the component of the corresponding electric field. (c), (d) �C
yx and �C

xy as functions of
u ¼ eA0 for graphene driven by CPL, LPL1, LPL2, and LPL3. The horizontal dashed lines in (c) and (d) correspond to �2e2h�1 and 2e2h�1, respectively.
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symmetry. We should note that �C
xy ¼ �C

yx for LPL1 does not
contradict the properties of the C3 rotational symmetry (see
Appendix B). Since the anomalous Hall conductivity is off-
diagonal and antisymmetric, our results indicate that the
light-induced AHE comes from a combination of mirror
symmetry breaking and time-reversal symmetry breaking.
This is consistent with the AHE in nondriven systems.31,32)

Our results also suggest that the off-diagonal symmetric
charge conductivity can be regarded as an indicator for mirror
symmetry breaking in the presence of the time-reversal
symmetry. This might be used to detect helical higher-order
topological insulators,33) which are protected by the mirror
symmetry and time-reversal symmetry, because that con-
ductivity vanishes with the mirror symmetry or its combining
symmetry, as shown above.

Another difference is about the quantization of �C
yx. �

C
yx is

quantized only with CPL. This quantization can be under-
stood using a high-frequency expansion,34,35) as shown in
previous studies:11,36) the term proportional to ��1 gives a
pure-imaginary hopping integral between next-nearest neigh-
bors on the honeycomb lattice, which is similar to the term
vital for the quantum Hall effect.37) Similarly, we can
understand the non-quantized �C

yx with LPL: the ��1 term
becomes zero. This is consistent with the property that LPL
does not break the time-reversal symmetry. Note that except
the above interpretations, we do not use the high-frequency
expansion.

The other difference is about the Γ dependence of �C
yx.

Figure 3(a) shows the Γ dependence of �C
yx for graphene

driven by LPL1. �C
yx is roughly proportional to ��1. This

contrasts the Γ dependence of the off-diagonal charge
conductivity for graphene driven by CPL because it is
almost independent of Γ [e.g., compare the red curve in
Fig. 2(d) of this paper and the brown one in Fig. 10 of
Ref. 11]. Note that �C

yx with LPL1, as well as that with CPL,
is little dependent on the bath temperature T [Fig. 3(b)]. This
is because the bath temperature may play a similar role to the
temperature appearing in the distribution function. We should
note that Γ is independent of temperature in our theory.

The sign of the off-diagonal symmetric charge conductiv-
ity can be reversed by replacing LPL1 by the LPL for �x ¼
��y ¼ 1 or ��x ¼ �y ¼ 1, a counterpart connected by the
mirror operation about the xz or yz plane, respectively.
Furthermore, it remains unchanged by replacing LPL1 by
the LPL for �x ¼ �y ¼ �1. The similar properties hold for
arbitrary θ when �x ¼ cos � and �y ¼ sin �. These three
additional results are shown in Appendix F. They also suggest
the vital role of the mirror symmetries and their combining
symmetries in the off-diagonal charge conductivity.

5. Discussion

The importance of the mirror symmetry breaking is a
general concept. Let us consider a situation where the probe
field is applied along the x axis of a material. If the mirror
symmetry about the xz plane (or its combining symmetry
with a uniform time translation) exists, any currents along the
y axis are prohibited [Fig. 4(a)]. Meanwhile, if it is broken,
the charge current along the y axis can be induced [Fig. 4(b)].
This current is finite (i.e., �C

yx ≠ 0) if the mirror symmetry
about the yz plane (or its combining symmetry), as well as
that about the xz plane, is broken. Therefore, the mirror

symmetry breaking by light plays the key role in the light-
induced off-diagonal charge transport. Although mirror
symmetry breaking about the xy plane is important in several
systems with the Rashba spin–orbit coupling,38,39) it is not
essential for obtaining �C

yx and �C
xy; such off-site spin–orbit

coupling is absent in our system. Note that the importance of
the mirror symmetry breaking can been seen from Eq. (8)
and the expression using the Berry curvature because both
contain the momentum summation of the product of the x and
y components of the group velocity, which can be finite
without the mirror symmetries about the xz and yz planes and
their combining symmetries.

Our results can be tested experimentally. In our system, the
nonequilibrium steady state can be achieved due to Γ at times
larger than 	 ¼ ħ

2�
¼ Oð10 fsÞ. Then, the off-diagonal charge

conductivity in graphene driven by LPL1 could be observed
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Fig. 3. (Color online) (a), (b) The dependences of �C
yx on the damping

induced by the system-bath coupling, Γ, and the temperature of the bath, T,
for graphene driven by LPL1.
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Fig. 4. (Color online) (a), (b) Situations with and without the mirror
symmetry (or its combining symmetry with a uniform time translation) under
the probe field applied along the x axis.
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experimentally in pump–probe measurements. Note that
u ¼ eE0aNN

�
¼ 0:1 at � ¼ 8tNN � 24 eV corresponds to E0 �

171MVcm−1. In this estimate, we have used aNN � 0:14
nm.40) We have also set tNN � 3 eV because, according to
the first-principles calculations without AðtÞ,41) the energy
difference between the two bands in our model at k ¼ 0
corresponds to about 19 eV, i.e., 6tNN � 19 eV. Because of
tNN � 3 eV, kBT ¼ 0:006tNN (� 0:018 eV) corresponds to
about 209K, where kB � 8:6 � 10�5 eVK−1 is used. Since
�C
yx and �

C
xy become finite at nonzero u’s [Figs. 2(c) and 2(d)],

the off-diagonal charge transport induced by LPL1 is
testable.

6. Conclusion

We have studied the polarization dependence of the light-
induced mirror symmetry breaking and its effects on charge
transport in periodically driven graphene. We showed that the
mirror symmetries about the xz and yz planes and their
combining symmetries are broken by CPL and by the LPL
whose Ax and Ay are both nonzero. This mirror symmetry
breaking leads to the light-induced AHE in the absence of the
time-reversal symmetry. This indicates that the origin of the
light-induced AHE is a combination of the time-reversal
symmetry breaking and the mirror symmetry breaking. In the

presence of time-reversal symmetry, the mirror symmetry
breaking results in the off-diagonal symmetric charge
conductivity. This conductivity could be used to detect the
mirror symmetry breaking with the time-reversal symmetry.
Our results highlight the overlooked role of the light-induced
mirror symmetry breaking in the light-induced AHE and
reveal the emergence of the off-diagonal symmetric charge
transport induced by LPL.
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Appendix A: Light-induced Mirror Symmetry
Breaking for the Floquet Hamiltonian

We analyze the polarization dependence of the light-
induced mirror symmetry breaking for the Floquet Hamil-
tonian. As we will show below, this polarization dependence
is the same as that for the time-dependent Hamiltonian,
which has been shown in the main text. (Note that the
Floquet Hamiltonian is distinct from that obtained in a high-
frequency expansion.) The momentum dependence of the
Floquet Hamiltonian is characterized by

½�ABðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�t�ABðk; tÞ

¼ ½tZAB�mne
�iky þ ½tXAB�mne

i
ffiffi
3

p
2
kxei

ky
2 þ ½tYAB�mne

�i
ffiffi
3

p
2
kxei

ky
2 ; ðA:1Þ

½�BAðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�t�BAðk; tÞ

¼ ½tZBA�mne
iky þ ½tXBA�mne

�i
ffiffi
3

p
2
kxe�i

ky
2 þ ½tYBA�mne

i
ffiffi
3

p
2
kxe�i

ky
2 ; ðA:2Þ

where

½tZab�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�ttZabðtÞ; ðA:3Þ

½tXab�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�ttXabðtÞ; ðA:4Þ

½tYab�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�ttYabðtÞ: ðA:5Þ

Note that �ABðk; tÞ and �BAðk; tÞ have been given by Eqs. (3)
and (4), respectively. (We neglect the energy shifts due to the
light frequency in the Floquet Hamiltonian because such
momentum-independent terms do not affect mirror symme-
tries.) Note that we have considered ½�ABðkÞ�mn and
½�BAðkÞ�mn because they give the finite components of Hm;n,
which is part of the matrix used to obtain the quasienergy in
the Floquet state.11) As we have explained in the main text,
the mirror symmetry about the xz plane is preserved if the
hopping integrals as a function of time satisfy Eq. (5).
Therefore, for the Floquet Hamiltonian, this mirror symmetry
is preserved if

½tZAB�mn ¼ ½tZBA�mn; ½tYAB�mn ¼ ½tXBA�mn; ½tXAB�mn ¼ ½tYBA�mn:

ðA:6Þ
In the case of the system driven by LPL described by Eq. (6),
the hopping integrals are given by

½tZAB�mn ¼ tNNi
n�mJm�nð�yuÞ; ðA:7Þ

½tXAB�mn ¼ tNNi
n�mJn�m

ffiffiffi
3

p
�x þ �y

2
u

� �
; ðA:8Þ

½tYAB�mn ¼ tNNi
n�mJm�n

ffiffiffi
3

p
�x � �y

2
u

� �
; ðA:9Þ

½tZBA�mn ¼ tNNi
n�mJn�mð�yuÞ; ðA:10Þ

½tXBA�mn ¼ tNNi
n�mJm�n

ffiffiffi
3

p
�x þ �y

2
u

� �
; ðA:11Þ

½tYBA�mn ¼ tNNi
n�mJn�m

ffiffiffi
3

p
�x � �y

2
u

� �
; ðA:12Þ

where JlðxÞ is the Bessel function of the first kind with the
order l. Therefore, the mirror symmetry about the xz plane is
preserved for the LPL with �x ≠ 0, �y ¼ 0, whereas it is
broken by the LPL with �x ¼ 0, �y ≠ 0 or �x ≠ 0, �y ≠ 0.
Similarly, we can show that this mirror symmetry is broken
by CPL described by Eq. (7). These results are the same as
the polarization dependence shown in the main text.

Appendix B: C3 Rotational Symmetry and Mirror
Symmetries without or with a Uniform
Time Translation

We discuss the C3 rotational symmetry, the mirror
symmetries, and the combining symmetries with a uniform
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time translation. First, we show that the C3 rotational
symmetry is broken with CPL or LPL, that the combining
symmetry, the symmetry of a combination of the C3 rotation
and a uniform time translation, is preserved with CPL if
Tt : t ! t þ 2�

3�
, and that the combining symmetry is broken

with LPL. Next, we review the mirror symmetry about the
xz or yz plane with CPL or LPL, which has been discussed
in Sect. 3. Then, we show that, as well as the mirror
symmetries, the combining symmetries, the symmetries of
combinations of the mirror operations about the xz and yz
planes and a uniform time translation, are broken with CPL
or LPL1. We also show that the symmetry of a combination
of the mirror operation about the yz or xz plane and the
uniform time translation Tt : t ! t � �

�
is preserved with

LPL2 or LPL3, respectively. As shown in Sect. 3, the mirror
symmetry about the yz or xz plane is broken with LPL2 or
LPL3, respectively. Note that for LPL1 �x ≠ 0 and �y ≠ 0 in
Eq. (6), for LPL2 �x ≠ 0 and �y ¼ 0, and for LPL3 �x ¼ 0

and �y ≠ 0.
We begin with the properties about the C3 rotational

symmetry for graphene driven by CPL. This periodically
driven system has the C3 rotational symmetry if the HsðtÞ
remains unchanged after a counterclockwise rotation of 120
degrees around the z axis. This condition can be expressed as
the following equation:

C�1
3 HsðtÞC3 ¼ HsðtÞ: ðB:1Þ

In the case of graphene, this equation can be rewritten as
follows:

C�1
3 tZABðtÞC3 ¼ tZABðtÞ; ðB:2Þ

C�1
3 tXABðtÞC3 ¼ tXABðtÞ; ðB:3Þ

C�1
3 tYABðtÞC3 ¼ tYABðtÞ; ðB:4Þ

where tZABðtÞ ¼ tNNe
�ieAðtÞ�R0 , tXABðtÞ ¼ tNNe

�ieAðtÞ�R1 , and
tYABðtÞ ¼ tNNe

�ieAðtÞ�R2 . Since the C3 rotation transforms the
Z, X, and Y bonds on the honeycomb lattice into the X, Y, and
Z bonds, respectively [see Fig. 1(a) or 1(b)], the left-hand
sides of Eqs. (B·2)–(B·4) become

C�1
3 tZABðtÞC3 ¼ tXABðtÞ; ðB:5Þ

C�1
3 tXABðtÞC3 ¼ tYABðtÞ; ðB:6Þ

C�1
3 tYABðtÞC3 ¼ tZABðtÞ: ðB:7Þ

Therefore, if the hopping integrals satisfy

C�1
3 tZABðtÞC3 ¼ tXABðtÞ ¼ tZABðtÞ; ðB:8Þ

C�1
3 tXABðtÞC3 ¼ tYABðtÞ ¼ tXABðtÞ; ðB:9Þ

C�1
3 tYABðtÞC3 ¼ tZABðtÞ ¼ tYABðtÞ; ðB:10Þ

the C3 rotational symmetry is preserved; otherwise, it is
broken. Combining Eqs. (B·8)–(B·10) with the equations of
the hopping integrals for graphene driven by CPL,

tZABðtÞ ¼ tNNe
�iu sinð�tÞ; ðB:11Þ

tXABðtÞ ¼ tNNe
�iu sinð�t�2�

3
Þ; ðB:12Þ

tYABðtÞ ¼ tNNe
�iu sinð�t�4�

3
Þ; ðB:13Þ

we find that these hopping integrals do not satisfy
Eqs. (B·8)–(B·10), which means that the C3 rotational
symmetry is broken for graphene driven by CPL. Meanwhile,

the periodically driven system has the combining symmetry,
the symmetry of a combination of the C3 rotation and a
uniform time translation Tt, if

T�1
t C�1

3 HsðtÞC3Tt ¼ HsðtÞ; ðB:14Þ
which is reduced in the case of graphene to

T�1
t C�1

3 tZABðtÞC3Tt ¼ tZABðtÞ; ðB:15Þ
T�1
t C�1

3 tXABðtÞC3Tt ¼ tXABðtÞ; ðB:16Þ
T�1
t C�1

3 tYABðtÞC3Tt ¼ tYABðtÞ: ðB:17Þ
If we consider the uniform time translation,

Tt : t ! t þ 2�

3�
; ðB:18Þ

the left-hand sides of Eqs. (B·15)–(B·17) are written in
graphene driven by CPL as follows:

T�1
t C�1

3 tZABðtÞC3Tt ¼ T�1
t tXABðtÞTt ¼ tZABðtÞ; ðB:19Þ

T�1
t C�1

3 tXABðtÞC3Tt ¼ T�1
t tYABðtÞTt ¼ tXABðtÞ; ðB:20Þ

T�1
t C�1

3 tYABðtÞC3Tt ¼ T�1
t tZABðtÞTt ¼ tYABðtÞ; ðB:21Þ

where we have used Eqs. (B·5)–(B·7) and (B·11)–(B·13).
Therefore, the combining symmetry, which may be called
a time-screw symmetry, is preserved for graphene driven
by CPL. Because of this property, the time-averaged off-
diagonal charge conductivities in the nonequilibrium steady
state with CPL satisfy �C

xy ¼ ��C
yx
11) even without using the

Onsager reciprocal relation.
In a similar way, we can show for graphene driven by LPL

that the C3 rotational symmetry and its combining symmetry
are both broken. This result holds for arbitrary �x and �y of
Eq. (6). Because of the breaking of these symmetries, there is
no need to satisfy �C

xy ¼ ��C
yx in the case of LPL. Namely,

�C
xy ¼ �C

yx with LPL1 is symmetrically reasonable. Note that
for graphene driven by LPL the hopping integrals are given by

tZABðtÞ ¼ tNNe
�iu�y cosð�tÞ; ðB:22Þ

tXABðtÞ ¼ tNNe
iu
ffiffi
3

p
2
�x cosð�tÞeiu

�y
2
cosð�tÞ; ðB:23Þ

tYABðtÞ ¼ tNNe
�iu

ffiffi
3

p
2
�x cosð�tÞeiu

�y
2
cosð�tÞ: ðB:24Þ

We turn to the properties of the mirror symmetry about the
xz or yz plane. The periodically driven system is symmetric
with respect to the xz mirror plane [Fig. 1(a)] if

��1
m HsðtÞ�m ¼ HsðtÞ; ðB:25Þ

which is written in the case of graphene as

��1
m tZABðtÞ�m ¼ tZABðtÞ; ðB:26Þ

��1
m tXABðtÞ�m ¼ tXABðtÞ; ðB:27Þ

��1
m tYABðtÞ�m ¼ tYABðtÞ: ðB:28Þ

As we can see from Fig. 1(a), the left-hand sides of these
equations become

��1
m tZABðtÞ�m ¼ tZBAðtÞ; ðB:29Þ

��1
m tXABðtÞ�m ¼ tYBAðtÞ; ðB:30Þ

��1
m tYABðtÞ�m ¼ tXBAðtÞ: ðB:31Þ

A combination of Eqs. (B·26)–(B·28) and (B·29)–(B·31)
gives Eq. (5). Therefore, as we have shown in Sect. 3, the
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mirror symmetry about the xz plane is broken for graphene
driven by CPL and LPL with �y ≠ 0, whereas it is preserved
for graphene driven by LPL with �y ¼ 0 (see Table I). For
the mirror symmetry about the yz plane, Eqs. (B·25) and
(B·26)–(B·28) are replaced by

ð� 0
mÞ�1HsðtÞ� 0

m ¼ HsðtÞ; ðB:32Þ
and

ð� 0
mÞ�1tZABðtÞ� 0

m ¼ tZABðtÞ; ðB:33Þ
ð� 0

mÞ�1tXABðtÞ� 0
m ¼ tXABðtÞ; ðB:34Þ

ð� 0
mÞ�1tYABðtÞ� 0

m ¼ tYABðtÞ: ðB:35Þ
Moreover, as we can see from Fig. 1(b), the left-hand sides of
Eqs. (B·33)–(B·35) are expressed as

ð� 0
mÞ�1tZABðtÞ� 0

m ¼ tZABðtÞ; ðB:36Þ
ð� 0

mÞ�1tXABðtÞ� 0
m ¼ tYABðtÞ; ðB:37Þ

ð� 0
mÞ�1tYABðtÞ� 0

m ¼ tXABðtÞ: ðB:38Þ
Therefore, as we have remarked in Sect. 3, the mirror
symmetry about the yz plane is broken for graphene driven
by CPL or LPL with �x ≠ 0, whereas it is preserved for
graphene driven by LPL with �x ¼ 0 (see Table I). Then, for
the combining symmetry for the xz mirror plane, Eqs. (B·25)
and (B·32) are replaced by

T�1
t ��1

m HsðtÞ�mTt ¼ HsðtÞ; ðB:39Þ
and

T�1
t ð� 0

mÞ�1HsðtÞ� 0
mTt ¼ HsðtÞ; ðB:40Þ

respectively. In the case of graphene, the former is
decomposed into

T�1
t ��1

m tZABðtÞ�mTt ¼ T�1
t tZBAðtÞTt ¼ tZABðtÞ; ðB:41Þ

T�1
t ��1

m tXABðtÞ�mTt ¼ T�1
t tYBAðtÞTt ¼ tXABðtÞ; ðB:42Þ

T�1
t ��1

m tYABðtÞ�mTt ¼ T�1
t tXBAðtÞTt ¼ tYABðtÞ; ðB:43Þ

and the latter is decomposed into

T�1
t ð� 0

mÞ�1tZABðtÞ� 0
mTt ¼ T�1

t tZABðtÞTt ¼ tZABðtÞ; ðB:44Þ
T�1
t ð� 0

mÞ�1tXABðtÞ� 0
mTt ¼ T�1

t tYABðtÞTt ¼ tXABðtÞ; ðB:45Þ
T�1
t ð� 0

mÞ�1tYABðtÞ� 0
mTt ¼ T�1

t tXABðtÞTt ¼ tYABðtÞ: ðB:46Þ
In deriving the first and the last three equations, we have used
Eqs. (B·29)–(B·31) and (B·36)–(B·38), respectively. Using
Eqs. (B·11)–(B·13) or (B·22)–(B·24), we can show that the
combining symmetries for the xz and yz mirror planes are
broken for graphene driven by CPL or LPL1. This is because
in the case of graphene driven by CPL or LPL1, there is no
uniform time translation which makes the system after the
mirror operation the same as that before it. For example, in
the case of the mirror symmetry about the yz plane with CPL,
if we choose Tt in Eqs. (B·44)–(B·46) as Eq. (B·18), we get

T�1
t ð� 0

mÞ�1tZABðtÞ� 0
mTt

¼ T�1
t tZABðtÞTt ¼ tNNe

�iu sinð�tþ2�
3
Þ ¼ tYABðtÞ ≠ tZABðtÞ;

ðB:47Þ
T�1
t ð� 0

mÞ�1tXABðtÞ� 0
mTt

¼ T�1
t tYABðtÞTt ¼ tNNe

�iu sinð�t�2�
3
Þ ¼ tXABðtÞ; ðB:48Þ

T�1
t ð� 0

mÞ�1tYABðtÞ� 0
mTt

¼ T�1
t tXABðtÞTt ¼ tNNe

�iu sinð�tÞ ¼ tZABðtÞ ≠ tYABðtÞ: ðB:49Þ
There is no uniform time translation that the three conditions
for the hopping integrals are satisfied simultaneously. In
contrast, the combining symmetry for the yz or xz mirror
plane is preserved in graphene driven by LPL2 or LPL3,
respectively. As we have shown in Sect. 3, the mirror
symmetry about the xz plane is preserved for graphene driven
by LPL2, whereas it is broken for graphene driven by LPL3.
Meanwhile, the hopping integrals for graphene driven by
LPL3 satisfy Eqs. (B·41)–(B·43) if the Tt is chosen as

Tt : t ! t � �

�
: ðB:50Þ

By using the same Tt, we can show that the hopping integrals
for graphene driven by LPL2 satisfy Eqs. (B·44)–(B·46).
Therefore, the symmetry of a combination of the mirror
operation about the yz or xz plane and the uniform time
translation of Eq. (B·50), which may be called a time-glide
symmetry, is preserved for graphene driven by LPL2 or
LPL3, respectively.

Appendix C: Derivation of Eq. (8)

We derive Eq. (8). Since this derivation has been
explained, for example, in Ref. 12, we explain the main
points below. Treating AprobðtÞ in the linear-response theory,
we express a charge conductivity as

�C
��ðt; t 0Þ ¼

1

i!


h j�CðtÞi

A�

probðt 0Þ
; ðC:1Þ

where h j�CðtÞi is the expectation value of the operator of the
charge current density j�CðtÞ ¼ J�CðtÞ=V, J�CðtÞ is the charge
current operator,

J�CðtÞ ¼ ð�eÞ
X
k

X
a;b

X
�¼";#

v�
abðk; tÞcyka�ðtÞckb�ðtÞ; ðC:2Þ

and v�
abðk; tÞ ¼ @�abðk;tÞ

@k�
. By substituting Eq. (C·2) into

Eq. (C·1) and doing some calculations,12) we get

�C
��ðt; t 0Þ ¼ �Cð1Þ

�� ðt; t 0Þ þ �Cð2Þ
�� ðt; t 0Þ; ðC:3Þ

where

�Cð1Þ
�� ðt; t 0Þ ¼ e

!V

X
k

X
a;b

X
�¼";#


v�
abðk; tÞ


A�
probðt 0Þ

G<
b�a�ðk; t; tÞ; ðC:4Þ

�Cð2Þ
�� ðt; t 0Þ ¼ ð�eÞ2

!V

X
k

X
a;b;c;d

X
�;�0¼";#

v�
abðk; tÞv�cdðk; t 0Þ

� ½GR
b�c�0 ðk; t; t 0ÞG<

d�0a�ðk; t 0; tÞ
þ G<

b�c�0 ðk; t; t 0ÞGA
d�0a�ðk; t 0; tÞ�; ðC:5Þ

and the lesser, retarded, and advanced Green’s functions are
defined as follows:

G<
b�0a�ðk; t; t 0Þ ¼ ihcyka�ðt 0Þckb�0 ðtÞi; ðC:6Þ

GR
a�b�0 ðk; t; t 0Þ ¼ �i�ðt � t 0Þhfcka�ðtÞ; cykb�0 ðt 0Þgi; ðC:7Þ

GA
a�b�0 ðk; t; t 0Þ ¼ i�ðt 0 � tÞhfcka�ðtÞ; cykb�0 ðt 0Þgi: ðC:8Þ

Since we consider charge transport in the nonequilibrium
steady state, we introduce the time-averaged charge con-
ductivity,
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�C
�� ¼ lim

!!0
Re
Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�C
��ðt; t 0Þ; ðC:9Þ

where trel ¼ t � t 0 and tav ¼ ðt þ t 0Þ=2. By combining
Eq. (C·9) with Eqs. (C·3)–(C·5) and performing some
calculations,12) we obtain

�C
�� ¼

ð�eÞ2
V

X
k

X
a;b;c;d

X
�;�0¼";#

Z �=2

��=2

d!0

2�

X1
m;l;n;q¼�1

�
�
½v�

abðkÞ�ml

@½GR
b�c�0 ðk; !0Þ�ln

@!0 ½v�cdðkÞ�nq½G<
d�0a�ðk; !0Þ�qm

�½v�
abðkÞ�ml½G<

b�c�0 ðk; !0Þ�ln½v�cdðkÞ�nq
@½GA

d�0a�ðk; !0Þ�qm
@!0

�
;

ðC:10Þ
where the group velocity and Green’s functions in the
Floquet representation are defined as
½v�

abðkÞ�mn

¼
Z Tp

0

dt

Tp
eiðm�nÞ�tv�

abðk; tÞ; ðC:11Þ

½Gr
a�b�0 ðk; !0Þ�mn

¼
Z 1

�1
dtrel e

ið!0þmþn
2
�Þtrel

Z Tp

0

dtav
Tp

eiðm�nÞ�tavGr
a�b�0 ðk; t; t 0Þ:

ðC:12Þ
Equation (C·10) is equivalent to Eq. (8).

Appendix D: Dyson’s Equation for the Green’s
Functions

The Green’s functions appearing in Eq. (8) are determined
from Dyson’s equation in a matrix form,12)

G ¼ G0 þ G0�G; ðD:1Þ
where

G ¼ GR GK

0 GA

 !
; G0 ¼

GR
0 GK

0

0 GA
0

 !
;

� ¼ �R �K

0 �A

 !
: ðD:2Þ

Here GR, GA, and GK are the retarded, advanced, and
Keldysh Green’s functions with Hsb, GR

0 , G
A
0 , and GK

0 are
those without Hsb, and �R, �A, and �K are the retarded,
advanced, and Keldysh self-energies due to the second-order
perturbation of Hsb; the matrix GR is, for instance, given by
GR ¼ ð½GR

a�b�0 ðk; !Þ�mnÞ, where a, b ¼ A, B, σ, �0 ¼ ", ↓, and
m, n ¼ �1; . . . ; 0; 1; . . . ;1. The retarded, advanced, and
Keldysh components are related to the lesser component via
the relation, such as

G< ¼ 1

2
ðGK � GR þGAÞ: ðD:3Þ

In the second-order perturbation theory, in which Hsb is
treated as perturbation, �R, �A, and �K are given by12)

½�R
a�b�0 ðk; !Þ�mn ¼ �i
m;n
a;b
�;�0�; ðD:4Þ

½�A
a�b�0 ðk; !Þ�mn ¼ þi
m;n
a;b
�;�0�; ðD:5Þ

½�K
a�b�0 ðk; !Þ�mn ¼ �2i�
m;n
a;b
�;�0 tanh

! þ m�

2T
; ðD:6Þ

where Γ is the damping. Then, the matrices GR, GA, and GK

can be determined from the following relations:12)

ðGRÞ�1 ¼ ðG�1ÞR; ðD:7Þ
ðGAÞ�1 ¼ ðG�1ÞA; ðD:8Þ

GK ¼ �GRðG�1ÞKGA; ðD:9Þ
where

G�1 ¼ ðG�1ÞR ðG�1ÞK
0 ðG�1ÞA

 !
: ðD:10Þ

Therefore, we obtain the retarded and advanced Green’s
functions with Hsb using Eqs. (D·7) and (D·8) with the
equations,

½ðG�1ÞRa�b�0 ðk; !Þ�mn

¼ ð! þm� þ i�Þ
m;n
a;b
�;�0 � ½�abðkÞ�mn
�;�0 ; ðD:11Þ
½ðG�1ÞAa�b�0 ðk; !Þ�mn

¼ ð! þm� � i�Þ
m;n
a;b
�;�0 � ½�abðkÞ�mn
�;�0 ; ðD:12Þ
where

½�abðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�t�abðk; tÞ: ðD:13Þ

We also get the Keldysh Green’s function with Hsb using
these Green’s functions, Eq. (D·9), and

½ðG�1ÞKa�b�0 ðk; !Þ�mn ¼ 2i�
m;n
a;b
�;�0 tanh
! þ m�

2T
:

ðD:14Þ
Then, using these three Green’s functions and Eq. (D·3), we
obtain the lesser Green’s function with Hsb.

Appendix E: Details of the Numerical Calculations

We numerically calculate �C
�� of Eq. (8) in the following

procedure. To calculate the momentum summation, we set
k ¼ m1

N1
b1 þ m2

N2
b2 and N1 ¼ N2 ¼ 360, where 0 � m1 < N1,

0 � m2 < N2, b1 ¼ tð 2�ffiffi
3

p 2�
3
Þ, b2 ¼ tð 2�ffiffi

3
p �2�

3
Þ, and

N1N2 ¼ N
2
. We calculated the frequency integral usingR �=2

��=2 d!
0 Fð!0Þ �PW�1

s¼0 �!0Fð!0
sÞ, where !0

s ¼ ��=2 þ
s�!0, !0

W ¼ �=2, and �!0 ¼ 0:001tNN. Then, to calculate
the frequency derivatives of the Green’s functions, we used
@Fð!0Þ
@!0 � Fð!0þ�!0Þ�Fð!0��!0Þ

2�!0 . We took the trace over the
Floquet states [i.e., trðABCDÞ ¼P1

m;l;n;q¼�1 AmlBlnCnqDqm],
replaced the summation over the Floquet indices,P1

m;l;n;q¼�1, by
Pnmax

m;l;n;q¼�nmax
, and set nmax ¼ 2.

Appendix F: Additional Numerical Results

We show additional numerical results. Figure F·1(a)
compares the u dependences of �C

yx in graphene driven by
the LPL for �x ¼ �y ¼ 1, which has been considered as the
case of LPL1 in the main text, and by the LPL for �x ¼
��y ¼ 1. (Note that in both cases the mirror symmetries
about the xz and yz planes and their combining symmetries
are both broken, which means that the latter LPL also belongs
to LPL1.) The �C

yx’s in these two cases are the same in
magnitude and opposite in sign. In addition, �C

yx ¼ �C
xy holds

in both cases, as shown in Fig. F·1(b). We should note that
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the systems driven by the LPL for �x ¼ �y ¼ 1 and by the
LPL for �x ¼ ��y ¼ 1 are connected by a mirror operation
with respect to the xz plane, which interchanges parts of the
system above and below the xz mirror plane of Fig. 1(a). This
is because this mirror operation replaces tZABðtÞ, tYABðtÞ, and
tXABðtÞ by tZBAðtÞ, tXBAðtÞ, and tYBAðtÞ, respectively [see Eq. (5)]
and tZBAðtÞ, tXBAðtÞ, and tYBAðtÞ in the former case are the same as
tZABðtÞ, tYABðtÞ, and tXABðtÞ in the latter case. Note that these
hopping integrals with the LPL for �x ¼ �y ¼ 1 are given by

tZABðtÞ ¼ tNNe
�iu cos�t; tXABðtÞ ¼ tNNe

iu
ffiffi
3

p
2
cos�teiu

1
2
cos�t;

tYABðtÞ ¼ tNNe
�iu

ffiffi
3

p
2
cos�teiu

1
2
cos�t; ðF:1Þ

tZBAðtÞ ¼ tNNe
iu cos�t; tXBAðtÞ ¼ tNNe

�iu
ffiffi
3

p
2
cos�te�iu

1
2
cos�t;

tYBAðtÞ ¼ tNNe
iu
ffiffi
3

p
2
cos�te�iu

1
2
cos�t; ðF:2Þ

whereas those with the LPL for �x ¼ ��y ¼ 1 are given by

tZABðtÞ ¼ tNNe
iu cos�t; tXABðtÞ ¼ tNNe

iu
ffiffi
3

p
2
cos�te�iu

1
2
cos�t;

tYABðtÞ ¼ tNNe
�iu

ffiffi
3

p
2
cos�te�iu

1
2
cos�t; ðF:3Þ

tZBAðtÞ ¼ tNNe
�iu cos�t; tXBAðtÞ ¼ tNNe

�iu
ffiffi
3

p
2
cos�teiu

1
2
cos�t;

tYBAðtÞ ¼ tNNe
iu
ffiffi
3

p
2
cos�teiu

1
2
cos�t: ðF:4Þ

Moreover, Figs. F·1(c) and F·1(d) show that the sign of �C
yx

(¼ �C
xy) can be reversed by changing from the LPL for

�x ¼ �y ¼ 1 to that for ��x ¼ �y ¼ 1. This result can be
similarly understood because the system driven by the LPL
for ��x ¼ �y ¼ 1 is a counterpart connected by the mirror
operation about the yz plane. Then, �C

yx (¼ �C
xy) driven by the

LPL for �x ¼ �y ¼ �1 becomes the same as that for
�x ¼ �y ¼ 1, as shown in Figs. F·1(e) and F·1(f ). This is
because the system driven by the LPL for �x ¼ �y ¼ �1 is
connected to that driven by the LPL for �x ¼ ��y ¼ 1 by the
mirror operation about the yz plane (or to that driven by the
LPL for ��x ¼ �y ¼ 1 by the mirror operation about the xz
plane). The similar properties hold in more general cases in
which �x and �y are written as �x ¼ cos � and �y ¼ sin �, as
shown in Figs. F·2(a) and F·2(b). Namely, �C

yx (¼ �C
xy)’s

driven by the LPL for � ¼ �0 and �0 þ 180	 (e.g., � ¼ 30 and
210°) are the same in magnitude and sign, whereas those for
� ¼ 360	 � �0 and 180	 � �0 (e.g., � ¼ 330 and 150°) have
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Fig. F·1. (Color online) (a)–(f ) The polarization dependences of �C
yx and �

C
xy as functions of u ¼ eA0 for graphene driven by LPL. The blue, green, light blue,

and yellow lines correspond to the cases with the LPL for �x ¼ �y ¼ 1, for �x ¼ ��y ¼ 1, for ��x ¼ �y ¼ 1, and for �x ¼ �y ¼ �1, respectively.
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Fig. F·2. (Color online) The θ dependences of �C
yx and �C

xy at (a) u ¼ 0:4 and (b) u ¼ 0:8 in graphene driven by LPL for �x ¼ cos � and �y ¼ sin �. In these
panels, � ¼ 8tNN, � ¼ 0:004tNN, and T ¼ 0:006tNN.
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the opposite sign to � ¼ �0 and �0 þ 180	 and the same
magnitude; these properties can be understood in a similar
way. Therefore, these results indicate that the sign of the off-
diagonal symmetric charge conductivity can be changed by
switching LPL1 to a counterpart connected by the mirror
operation about the xz or yz plane. Note that the relation
between the LPL for �x ¼ �y ¼ 1 and for �x ¼ ��y ¼ 1 is
similar to that between left- and right-handed circularly
polarized light because the systems driven by left- and right-
handed circularly polarized light are connected by the mirror
operation (and also by a time-reversal operation12)).
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